
Environmental Health Perspectives
Vol. 73, pp. 179-189, 1987

Lipid Peroxidation and Antioxidative
Protection Mechanism in Rat Lungs upon
Acute and Chronic Exposure to Nitrogen
Dioxide
by Masaru Sagai* and Takamichi Ichinose*

This work was done to clarify the relation between the changes of lipid peroxidation and the activities
ofantioxidative protective enzymes in lungs ofrats exposed acutely, subacutely, and chronically to nitrogen
dioxide. It was confirmed that the activities of the antioxidative enzymes to protect cells from oxidative
stress increased in an early phase, and then the activities decreased gradually. Lipid peroxides increased
once in an early phase and then returned to the control level; thereafter, lipid peroxides increased gradually
again. Lipid peroxidation as measured by ethane exhalation increased significantly with 0.04, 0.4, and 4
ppm nitrogen dioxide exposure for 9, 18, and 27 months, and a dose-response relationship was clearly
observed. The temporal changes of lipid peroxidation varied inversely with that of the activities of an-
tioxidative protective enzymes.
From these results, it was suggested that the increments of antioxidative protective enzyme activities

in an early phase were complementary effects to protect cells from damage by lipid peroxides which were
increased by nitrogen dioxide exposure, and that the complementary effects are lost in later phases of
life-span exposure. Finally, loss of such protective complementary effects might relate to some chronic
diseases in lungs. Therefore, the temporal changes described above are important characteristics in chronic
exposure of air pollutants.

Introduction
Nitrogen dioxide (NO2) is a strong oxidizing pollutant

commonly found in urban air. The toxicity of NO2 has
been studied in a number of animal species. N02-related
studies of lung biochemistry have been directed to
either an investigation of the mechanism of toxic action
of NO2 or to the detection of early damage by NO2
inhalation. Two theories of action of NO2 on biological
systems have evolved as a result of these studies. The
dominant theory is that NO2 initiates lipid peroxidation,
which subsequently causes cell injury or death and the
symptoms associated with NO2 inhalation. The second
theory is that NO2 oxidizes low molecular weight re-
ducing substances and proteins. This oxidation results
in a metabolic dysfunction which evidences itself as the
toxic symptom. Several potential biochemical responses
to NO2 intoxication have been proposed. Lipid peroxi-
dation by NO2 and the several potential biochemical
defense mechanisms against NO2 will be discussed in
this review.

*Division of Basic Medical Sciences, National Institute for Envi-
ronmental Studies, P.O. Tsukuba, Ibaraki 305, Japan.

General Aspects of Lipid
Peroxidation by NO2
Peroxidation of biological membrane lipids is widely

considered to be an integral part of cell damage and
many toxic processes (1). Lipid peroxidation is initiated
by various free radicals and is a basic deteriorative pro-
cess in living systems involving the polyunsaturated
fatty acids and phospholipids in cellular membranes and
other tissue structures (2,3). The toxicity of NO2 is as-
sumed to be related to lipid peroxidation of biomem-
branes, because NO2 readily attacks unsaturated lipid
in lung tissue. A mechanism of lipid peroxidation re-
action by NO2 is shown in equations 1-5 (2).
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R'- +02 - R'02* (3)

R'02* + R'H Ro + R'OOH (4)

R'02. + AH _ R'OOH + A* (5)

Because the ethylene group of unsaturated fatty acids
is readily attacked by NO2, the free radical species
shown as I and II in Equation 1 are generated. Based
on spectroscopic evidence, Rowlands and co-workers (3)
proposed that species I is converted to species II, but
this type of reaction seems unlikely when compared to
similar free radical reactions. Most likely, the alkyl free
radicals can abstract hydrogen from unsaturated fatty
acids, which leads to conventional autoxidation (4,5)
(Eqs. 2-5). The autoxidation reaction is effectively re-
tarded by phenolic antioxidants such as a-tocopherol,
butylated hydroxyanisole, and butylated hydroxytol-
uene, suggesting that Equation 5 is likely.
On the other hand, both NO and NO2 are known to

react with hydrogen peroxide in the gas phase to pro-
duce hydroxyl radicals, as shown in Equations 6 and 7
(6).

NO + H202 *OH + HONO (6)
NO2 + H202 - *HO + HONO2 (7)

The formation of hydroxyl radicals in the lung is fea-
sible, because pulmonary alveolar macrophages can pro-
duce hydrogen peroxide via superoxide production in
the lung when polluted air is breathed. These hydroxyl
radicals are known to be extremely damaging in bio-
logical systems, as they are initiators of the lipid per-
oxidation reaction.

In Vivo Lipid Peroxidation
Evidence that NO2 causes lipid peroxidation was

shown by the measurement of conjugated dienes in
lungs (7) of rats exposed to 1 ppm NO2, 4 hr daily for
6 consecutive days. The formation of lipid peroxides in
the rats fed a-tocopherol-supplemented diets was lower
than that of the rats fed chow diets. Since then, many
investigators have tried to detect lipid peroxides in lung
tissues; however, they have been unable to detect lipid
peroxides following exposure to NO2 (8).

Acute Exposure
Recently, we confirmed the occurrence in in vivo lipid

peroxidation following acute (9,10), subacute (11), and
chronic exposure (12,13) to NO2 by the measurement
of ethane in the breath of rats and TBA reactants in
lung homogenates. Furthermore, the occurrence of lipid
peroxides was reported by Sevanian et al. by the mea-
surement of fatty acid epoxides (14) in lung lipids and
lung microsomes (15,16) of rats exposed to NO2. We
reported that time-dependent changes of lipid peroxi-
dations as measured by ethane exhalation and thiob-

arbituric acid (TBA) reactants in lungs of rats exposed
to 10 ppm NO2 for 2 weeks varied widely during the
exposure (9,10) (Fig. 1). The periodic changes of glu-
tathione peroxidase activity are also depicted in Figure
1. Ethane exhalation decreased significantly on day 1.
This decrease in the early phase is confirmed in another
experiment in which rats were exposed to 4.48 ppm NO2
for 1 hr (17). Thereafter, ethane exhalation increased
rapidly after 2 days and reached a maximum level at 3
to 4 days. The ethane exhalation began to decrease and
returned to the initial level at 10 days.
TBA reactants in lung tissue also decreased at day 1

and began to increase from 2 to 3 days. Maximum TBA
was observed at 3 days, and then the value decreased
rapidly and returned to the initial level. Figure 1 shows
the difference in increased percentage between the TBA
reactants and ethane exhalation. Figure 1 also shows
the formation of lipid peroxides in organs other than
lungs from 4 to 7 days, showing a maximum at 5 days,
because ethane exhalation reflects the total lipid per-
oxidation occurring in the entire body. This time course
ofTBA reactants was similar to the proliferation oftype
II cells in alveolar tissues following 2 and 17 ppm NO2
exposure, as shown by Evans et al. (18-20). Therefore,
the result ofTBA reactants may correspond to the pro-
cess in which Type I cells are damaged in an early phase
(0-1 day) by NO2 exposure; Type II cell proliferation
as a repair process begins at 1 to 3 days; and Type II
cell proliferation declines after 3 days. These results
suggest that formation of lipid peroxides in lungs may
be related closely to the process of Type II cell prolif-
eration.

Subacute Exposure
Lipid peroxidation upon longer term exposure to rel-

atively low levels of NO2 is reported by Ichinose and
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FIGURE 1. Periodic variations of ethane exhalation in breath, TBA
reactants, and glutathione peroxidase activity in lung tissue of
rats exposed to 10 ppm NO2 for 2 weeks. Initial values were 2.07
± 0.23 pmole/min per 100 g body weight for ethane exhalation
() and 24.5 ± 1.5 nmole/g of lung for TBA reactants (0). Values
are expressed as mean ± SE (n = 6-12). (- - -) initial level;
(- * - - ),difference between ethane contents and TBA reactants.
'(U) periodic changes of glutathione peroxidase activity.
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Sagai (11). Wistar male rats were exposed continuously
to 0.4, 1.2, and 4 ppm NO2 for 1, 2, 4, 8, 12, and 16
weeks. Lipid peroxides as measured by ethane exhala-
tion and TBA reactants in lungs are shown in Figure
2. Ethane exhalation increased to maximum levels after
the first week of NO2 exposure. At 4 weeks, ethane
exhalation had returned to near the initial level, but
tended to increase again very gradually from 8 to 16
weeks. The slight, time-dependent increases of ethane
exhalation in the control group may be due to aging
effect.
Maximum levels of TBA reactants in lungs were ob-

served between 2 and 4 weeks, and then returned to
the initial level at 8 weeks. Thereafter, TBA showed a
tendency to increase gradually from 12 to 16 weeks. A
dose dependency of ethane exhalation and TBA reac-
tants was observed throughout the study period.

Chronic Exposure
In an experiment of life-span exposure, Wistar male

rats were continuously exposed to 0.04, 0.4, and 4 ppm
NO2 for 9, 18, and 27 months (12) at each concentration.
Table 1 shows the concentration of TBA reactants in
lungs of rats exposed to 0.04, 0.4, and 4 ppm NO2 for
9 and 18 months. The significant increase of TBA reac-
tants in lungs at 9 months was observed in only the 4
ppm NO2 group. The amounts ofTBA reactants in lungs
at month 18 also increased significantly in 0.4 and 4 ppm
NO2 groups. Furthermore, the absolute values of TBA
reactants showed a tendency to increase with aging in
all groups.
Ethane evolution increased significantly and in a dose-
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Table 1. Concentration of thiobarbituric acid (TBA) reactants in
rat lungs after chronic exposure to nitrogen dioxide.

TBA values
Exposure nmole/g of wet lung
group 9-month exposure 18-month exposure
Control 46.2 + 2.3a (100%) 50.9 ± 1.6 (100%)
0.04 ppm 45.3 ± 2.2 (98%) 54.3 ± 1.3 (107%)
0.4 ppm 46.8 ± 2.5 (101%) 59.6 ± 2.0** (117%)
4.0 ppm 53.8 ± 3.8* (116%) 63.8 ± 2.5** (125%)
an = 12 rats per group. Values are x ± SE. Numbers in paren-

theses are percent of control value.
*p < 0.05, statistical significance between NO2-exposed group and

control group was determined by Student's t-test.
**p < 0.01.
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FIGURE 2. Periodic changes of ethane exhalation in breath, gluta-
thione peroxidase activity (A), and TBA reactants (B) in lungs of
rats exposed to 0 (control), 0.4, 1.2, and 4 ppm NO2 for 4 months.
(-) in A ethane exhalation; (-) in B shows TBA reactants;
(-- - -) glutathione peroxidase activity. (0) control group; (O) 0.4
ppm group; (LI) 1.2 ppm group; (U) 4 ppm group; * p < 0.05; **
p <0.01; *** p <0.001.
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FIGURE 3. Ethane exhalation in expired gases of rats exposed con-
tinuously to 0.04, 0.4, and 4 ppm NO2 for 9, 18, and 27 months.
* p <0.05; ** p <0.01; *** p <0.001.

dependent fashion upon exposure to 0.04, 0.4, and 4
ppm NO2 at 9 and 18 months (Fig. 3). Ethane evolution
at 27 months also increased significantly and in a dose-
dependent fashion upon exposure to 0.04 and 0.4 ppm
NO2. However, ethane evolution in the 4 ppm NO2
group was lower than in the 0.04 and 0.4 ppm NO2
groups. Values for the 4 ppm group were significantly
lower than the values for the 0.04 and 0.4 ppm NO2
groups, but were not different from the control values
at 27 months. This return to the control level did not
mean recovery to the normal state of the lungs. At 27
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months the decrease of the mean thickness of the al-
veolar wall and the appearance of lung fibrosis were
observed by Takenaka et al. (21) (Fig. 4) in the path-
ological examination of this study program. Therefore,
the decrease of ethane exhalation of rats exposed to 4
ppm NO2 for 27 months may be partially due to the
decrease of ventilatory capacity by lung fibrosis. How-
ever, such marked decrease of ethane exhalation might
not be explained by only the decrease of ventilatory
capacity. The decrease of lipid peroxidation itself may
also be a cause of the marked decrease of ethane ex-
halation. From these results, it was shown that lipid
peroxidation, as measured by ethane exhalation in the
breath of rats, is an excellent index of a biochemical
effect of the exposure to lower levels of NO2. It was
shown that the increments of ethane exhalation were
clearly related to the rise of NO2 concentrations and
prolongation ofthe exposure periods within an 18-month
exposure (Fig. 3). Furthermore, these changes were
similar to that pattern of the increased arithmetic mean
thickness of the alveolar wall observed by Takenaka et
al. (21). Hypertrophy of alveolar wall may relate to the
formation of lipid peroxides in alveolar wall. Bils (22)
also reported a thickening ofthe collagen fibrils in squir-
rel monkeys exposed to 3 ppm NO2, 4 hr daily for 4
days.
Although there is no direct relevancy to NO2, the

relation between lipid peroxidation and hypertrophy in
retina of chick embryo were reported by Yagi et al.
(23). They exposed chick embryos to a high concentra-
tion of oxygen to examine the causes of retrolental fi-
broplasia. These researchers observed the hypertrophy
of the retina and the increment of lipid peroxides in
retina. This result also indirectly suggests that the hy-
pertrophy of alveolar wall may relate to the increment
of lipid peroxides.
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Suzuki et al. (24,25) observed that arterial blood ox-
ygen tension (Pao2) of rats exposed to 0.4 and 4.0 ppm
NO2 for 9 and 18 months, respectively, was decreased
significantly from the control, but arterial carbon diox-
ide tension (PacO2) and pHa did not change, as shown
in Figure 5. Decreases of Pa02 in rats, rabbits, and
humans exposed to NO2 were also reported by Freeman
et al. (26), Davidson et al. (27), and Nieding and Wagner
(28), respectively. The decrease of Pao2 may be induced
by the thickening of the alveolar wall. Yoshikawa et al.
(29,30) reported that TBA reactants in serum, abdom-
inal aorta, and brain of rats were increased significantly
with a decrease of Pa02 under conditions of low oxygen
supply. These data indirectly suggest that rats exposed
to 0.4 and 4 ppm NO2 for 9 and 18 months exhibit a
hypoxemia-like condition and that lipid peroxidation
may be stimulated by such chronic hypoxemia.

Overall, these results suggest that chronic lung dis-
eases such as lung fibrosis may progress by a positive
feedback of chronic effects such as the increases of lipid
peroxides, hypertrophy of alveolar wall, and the de-
creases of PaO2, as shown below.
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FIGURE 4. Arithmetic mean thickness of alveolar wall of rats con-
tinuously exposed to 0.04, 0.4, and 4 ppm NO2 for 9, 18, and 27
months.
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FIGURE 5. Effect of NO2 exposure on arterial blood pHa, Paco2, and
PaO2 in unanesthetized rats. Values are expressed as mean ± SD
(n = 6); (C) control; *p < 0.05; *** p < 0.001.
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Effects of Enzyme Systems as
Biochemical Protective Mechanisms
The role of enzyme systems that can metabolize lipid

peroxides or inhibit their formation is very important
for protecting cells from oxidative stress. The gluta-
thione peroxidase system, consisting ofglutathione per-
oxidase, glutathione reductase, and glucose-6-phos-
phate dehydrogenase, is a typical enzyme system
protecting against oxidative damage. Chow and Tappel
(31) proposed an enzymatic system for the protection
of the lung against lipid peroxidation damage by ozone.

Glutathione peroxidase is considered to be responsi-
ble for the detoxification of lipid peroxides in tissue,
thus protecting cellular components from oxidative
damage (32-34).

RH -1 ROOH Y GSH NADP G-6-P

GHS-peroxidase G-6P dehydrogenase

ROH GSSG NADPH 6-PG

f-oxidation

Net Reacton: ROOH + 2GSH _ ROH + GSSG + H20
Where RH shows polyunsaturated fatty acid,

and ROOH shows lpid hydroperoxides

Glutathione S-transferase also protects cells from ox-
idative stress, because it can catalyze the same net re-
action as glutathione peroxidase (35,36).

0

t
GSH + ROOH _ GSH + ROH (enzymatic)
0

t
+) GSH + GHS GSSG + H20 (nonenzymatic)

2GSH + ROOH _ GSSG + ROH + H202 (net reacton)

Superoxide dismutase provides the basic defense
against the potential cytotoxic reactivities ofsuperoxide
anion radicals (37). An increase of superoxide dismutase
activity in lungs may represent adaptive changes that
reduce oxidative damage. DeLucia et al. (38) reported
that mixed disulfide between protein sulfhydryls and
nonprotein sulfhydryls was formed by ozone exposure.
The mixed disulfide formed is reduced to each free
sulfhydryl by disulfide reductase (39); therefore, disul-
fide reductase also plays an important role in the re-
duction of the mixed disulfide produced by oxidative
stress (38,39).
The effects of NO2 on these enzymatic protective sys-

tems were first reported by Chow et al. (40), Menzel et
al. (41), and Fukase et al. (42). Their results revealed
that glutathione peroxidase can be induced only by ex-

posure to relatively high levels of NO2. Furthermore,

Chow et al. (40) suggested that NO2 mainly attacks
reducing substances such as glutathione and NADPH.
Recently, we reported the alteration of these protective
enzymes in lungs of rats exposed to a relatively high
level (10 ppm) of NO2 for 2 weeks. The time-dependent
changes of the activities of glutathione peroxidase, glu-
tathione reductase, glucose-6-phosphate dehydroge-
nase, and 6-phosphogluconate dehydrogenase in lungs
of rats exposed to 10 ppm NO2, as shown in Figure 6,
were nearly symmetric with ethane exhalation and TBA
reactants. The symmetric relationship suggests that
lipid peroxides produced by the exposure to NO2 induce
these enzyme activities to protect cells from oxidative
damage (10). Although McCay et al. (43) reported that
glutathione peroxidase would not reduce lipid hydro-
peroxides present in membranes, Tappel (44) explored
this phenomenon and found new evidence for a phos-
pholipase that hydrolyzed fatty acid hydroperoxides
from phospholipids at rates significantly faster than
those of known phospholipases. The existence of a phos-
pholipase with a faster hydrolysis rate may explain this
discrepancy.

Sevanian et al. (45) reported that lipid hydroperox-
ides originating in the membrane were effectively re-
duced by glutathione peroxidase when phospholipase A2
was present in the assay system, and that low level
glutathione peroxidase activity was observed in the ab-
sence of phopholipase A2. These findings might explain
a suitability of the symmetrical changes between ethane
formation and glutathione peroxidase activity. The in-
creased activities of the enzymes illustrated in Figure
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FIGURE 6. Periodic variations of glutathione peroxidase, glutathi-
one reductase, glucose-6-phosphate dehydrogenase, and 6-phos-
phogluconate dehydrogenase activities. Initial values (nmole of
NADP+ reduced per mg of protein per min) were 88.8 + 2.9 for
GPx(EI); 124.3 ± 3.5 for GR(); 126.6 ± 5.9 for G6PD(O); and
145.4 ± 5.6 for 6PGD (0). Each value is expressed as mean +
SE (N = 6-12).
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6 may be a compensatory reaction for protecting cells
from lipid peroxide-induced damages.
The time-dependent changes of superoxide dismutase

and disulfide reductase in lungs of rats exposed to 10
ppm NO2 are similar to those of glutathione peroxidase
and glutathione reductase. The induced activity of su-
peroxide dismutase indirectly suggests involvement of
the superoxide anion radical in the formation of lipid
peroxidation products and the deterioration of cells
after NO2 exposure. However, the involvement might
be small because the induction of superoxide dismutase
was slight. The induction of disulfide reductase was re-
markable; therefore, the formation of mixed disulfide
by NO2 exposure might be largely due to the exposure
to relatively high levels of NO2.
Changes in glutathione peroxidase, glutathione re-

ductase (Fig. 7A), glucose-6-phosphate dehydrogenase
(Fig. 7B), superoxide dismutase, and disulfide reduc-
tase in lungs of rats exposed continuously to 0.4, 1.2,
and 4 ppm NO2 for 16 weeks were examined. The max-
imum levels of these protective enzyme activities were
observed at the 4th week, and then the activities of the
antioxidative protective enzymes showed a tendency to
decrease gradually with prolongation of exposure pe-
riod. The temporal changes between the antioxidative
protective enzyme activities and lipid peroxidation var-
ied inversely. Such inverse changes have also been ob-
served in the acute exposure of NO2, as shown in Fig-
ures 1 and 6. These results also suggest that the
induction of the antioxidative protective enzymes is a
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FIGURE 7. Time-dependent changes in glutathione reductase (GR)
and glucose-6-phosphate dehydrogenase activities in lungs of rats
exposed to 0, 0.4, 1.2, and 4.0 ppm NO2 for 4 months. Control
values of GR activities were between 110 and 78 rnmole of NADP+
formed/mg protein/min, and control values ofG6PD activities were
between 69.5 and 44.8 nmole of NADPH formed/mg protein/min,
from 1 through 16 weeks. (0) control group; (O) 0.4 ppm group;
(O) 1.2 ppm group; (U) 4.0 ppm group. *p < 0.05; **p < 0.01.

compensatory reaction against lipid peroxide-induced
damage.
We also examined the changes of the antioxidative

protective enzyme activities in lungs of rats exposed to
0.04, 0.4, and 4 ppm NO2 for a life-span (12). The results
obtained are shown in Tables 2 and 3. Glutathione per-
oxidase activity measured by using cumene-hydroper-
oxide as a substrate (GP.-cumene'OOH) did not show
any significant changes at months 9 and 18. The activity
of glutathione peroxidase measured by using hydrogen
peroxide as a substrate (GP.-H202) decreased below
each control level in lungs of rats exposed to 4 ppm NO2
for 9 months and 0.4 and 4 ppm NO2 for 18 months. The
activities of glutathione reductase (GR), glucose-6-phos-
phate dehydrogenase (G6PD), and 6-phosphogluconate
dehydrogenase (6PGD) in the 9-month exposure group
generally showed increases with an elevation of NO2
level, and significant increases in glutathione reductase
and glucose-6-phosphate dehydrogenase were observed
in the group exposed to 4 ppm NO2. A significant in-
crease of glucose-6-phosphate dehydrogenase was also
observed in the 4 ppm NO2 group after the 18-month
exposure. However, values for these three enzymes in
the other groups returned to their control level at the
18-month exposure. The activities of three kinds of glu-
tathione S-transferases at 9 months did not show any
significant changes among the three groups of NO2 ex-
posure, but the enzyme activities at 18 months, except
epoxy S-transferase, decreased significantly below the
control level in 0.4 and 4 ppm NO2 groups (Table 3).

It is reported that the activities of superoxide dis-
mutase and disulfide reductase did not show any sig-
nificant changes. Ayaz and Csallany (46) exposed female
mice continuously for 17 months to 0.5 and 1 ppm NO2
and fed the animals a basal diet which was either de-
ficient in vitamin E or supplemented with 30 and 300
mg/kg of diet. Consistent with our results, they found
the suppression of glutathione peroxidase in mice lung
of a combined group of vitamin E deficiency and 1 ppm
NO2 exposure. These results show that the activities of
the antioxidative protective enzymes, especially glutathi-
one peroxidase and glutathione S-transferase, tended to
decrease with prolongation of exposure period, and that
lipid peroxidation conversely increased with prolonga-
tion of exposure period. From these results, we pro-
posed the overall relationship between the antioxidative
protective enzymes and lipid peroxidation (12), as
shown in Figure 8.

Effects on Antioxidants
Reducing substances, such as NADPH, NADH, glu-

tathione, and vitamin C (ascorbic acid) are important
for the maintenance ofreducing potential and protection
of cells against oxidative stress.

Increase of reducing substances such as NADPH and
glutathione in lung tissue of the animals exposed to NO2
can be predicted easily from the increased activities of
glucose-6-phosphate dehydrogenase and glutathione re-
ductase, as described previously. Ospital et al. (47) re-
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Table 2. Concentration of total protein and the activities of glutathione peroxidase (GPx), glutathione reductase (GR), glucose-6-
phosphate dehydrogenase (G6PD), and 6-phosphogluconate dehydrogenase (6-PGD) in rat lungs after chronic exposure to nitrogen

dioxide.

Parameter
Total protein
mg/g wet lung

Exposure group
Control
0.04 ppm
0.4 ppm
4.0 ppm

9-month exposure
89.2 ± 2.1 (100%)
87.2 ± 1.8 (98%)
92.7 ± 3.3 (104%)
94.3 ± 2.5 (106%)

18-month exposure
89.1 ± 2.8 (100%)
91.7 ± 2.5 (100%)
96.1 ± 1.9 (105%)
89.0 ± 1.7 (100%)

GPx-cumene.OOHD Control 12.56 ± 0.17 (100%) 12.48 ± 0.94 (100%)
,umole NADPH 0.04 ppm 12.97 ± 0.38 (103%) 13.36 ± 1.05 (107%)
oxidized/min/g 0.4 ppm 12.63 ± 0.44 (101%) 12.17 ± 0.80 (98%)
wet wt. of lungs 4.0 ppm 13.13 ± 0.36 (105%) 11.72 ± 0.70 (94%)

GPx-H2O2c Control 8.12 ± 0.17 (100%) 9.05 ± 0.3 (100%)
pmole NADPH 0.04 ppm 7.61 ± 0.21 (94%) 9.59 ± 0.37 (106%)
oxidized/min/g 0.4 ppm 7.45 ± 0.37 (92%) 7.21 ± 0.15** (80%)
wet wt. of lungs 4.0 ppm 7.19 ± 0.27* (89%) 8.10 ± 0.20* (89%)

GR Control 5.24 ± 0.07 (100%) 5.50 ± 0.12 (101%)
,umole NADPH 0.04 ppm 5.25 ± 0.06 (100%) 5.57 ± 0.18 (101%)
oxidized/min/g 0.4 ppm 5.47 ± 0.13 (104%) 5.04 ± 0.14 (101%)
wet wt. of lungs 4.0 ppm 6.00 ± 0.11*** (115%) 6.00 ± 0.17 (109%)

G6PD Control 3.18 ± 0.16 (100%) 4.40 ± 0.25 (100%)
pumole NADPH 0.04 ppm 3.21 ± 0.12 (101%) 5.02 ± 0.20 (114%)
formed/min/g wet 0.4 ppm 3.53 ± 0.15 (111%) 4.80 ± 0.18 (111%)
wt. of lungs 4.0 ppm 4.72 ± 0.18*** (148%) 5.66 ± 0.33** (128%)

6 PGD Control 3.94 ± 0.17 (100%) 4.67 ± 0.13 (100%)
,umole NADPH 0.04 ppm 4.05 ± 0.11 (103%) 4.85 ± 0.12 (104%)
formed/min/g wet 0.4 ppm 3.78 ± 0.21 (96%) 4.68 ± 0.17 (100%)
wt. of lungs 4.0 ppm 4.41 ± 0.13 (114%) 5.15 ± 0.16 (110%)
an = 12 rats per group. Values are x ± SE. Numbers in parentheses are percent of control value.
b GPx-cumene OOH shows glutathione peroxidase assayed by cumene hydroperoxide as substrate.
cGPx-H202 shows glutathione peroxidase assayed by hydrogen peroxide as substrate.
*p < 0.05.
**p < 0.01.

***p < 0.001.

Table 3. Activities of three glutathione S-transferases: aryl, aralkyl, and epoxy S-transferase, in rat lungs after chronic exposure to
nitrogen dioxide.

Type of transferase Exposure group 9-month exposure 18-month exposure
Aryl S-transferase Control 0.179 t 0.004a (100%) 0.199 + 0.008 (100%)

,umole/min/g wet 0.04 ppm 0.187 t 0.005 (101%) 0.194 t 0.009 (98%)
wt. of lung 0.4 ppm 0.187 t 0.005 (104%) 0.170 t 0.008* (89%)

4.0 ppm 0.172 + 0.005 (96%) 0.153 + 0.009** (77%)
Aralkyl S-transferase Control 2.53 t 0.07 (100%) 2.39 t 0.10 (100%)

,umole/min/g wet 0.04 ppm 2.54 t 0.05 (100%) 2.32 t 0.12 (97%)
wt. of lung 0.4 ppm 2.65 t 0.06 (105%) 2.07 ± 0.11* (86%)

4.0 ppm 2.50 ± 0.09 (99%) 2.00 ± 0.07** (84%)
Epoxy S-transferase Control 0.143 ± 0.010 (100%) 0.170 ± 0.010 (100%)

pmole/min/g wet 0.04 ppm 0.154 ± 0.007 (108%) 0.340 + 0.030 (117%)
wt. of lung 0.4 ppm 0.161 ± 0.012 (113%) 0.190 ± 0.020 (112%)

4.0 ppm 0.133 ± 0.006 (93%) 0.186 ± 0.010 (109%)
an = 12 rats per group. Values are 2 + SE. Numbers in parentheses are percent of control value.
*p < 0.05.
**p < 0.01.

ported increase of the activity of the glycolytic pathway
in lung slices of rats exposed to 5 ppm NO2. They sug-
gested that this increased activity may be due to an
increased enzyme biosynthesis to protect cells from in-
jury upon NO2 exposure. It is well known that various
kinds of sulfur-containing compounds also reduce the
toxicity of NO2 (48,49).
With regard to the interaction between glutathione

and ascorbic acid, Leung and Morrow (50) showed that
dehydroascorbic acid can be reduced to ascorbic acid by
glutathione in vitro, but oxidized glutathione cannot be
reduced to glutathione by ascorbic acid. Vitamin E, as
well as vitamin C, is important as an antioxidant that
reacts rapidly with organic free radicals (51-54). Vi-
tamin C levels in the tissue are often considerably
greater than those of vitamin E (55). Nevertheless, vi-
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FIGURE 8. The temporal changes of lipid peroxidation as measured
by ethane exhalation and activities of antioxidative protective en-
zymes of rats exposed to 4 ppm NO2 for their life-span.
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FIGURE 9. Periodic variations of nonprotein sulfhydryls and vitamin
E in the lungs. Initial values of nonprotein sulfhydryls (0) and
vitamin E () were 11.1 ± 0.05 ,mole/g lung and 33.2 ± 1.1 ,g/
g lung, respectively. Values are expressed as mean ± SE (n
6-12).

tamin E, which is considerably more lipophilic, has been
found to be the more potent antioxidant in membranes.
Menzel (56,57) proposed that vitamin E as an antiox-

idant might protect the lung from damage by NO2 by
inhibiting lipid peroxidation. Data related to this hy-
pothesis have been reported by many investigators
(7,46,56-60). Tappel (60) has suggested synergistic ac-
tion of the two vitamins with regard to the action of
vitamin E as the primary antioxidant and the regen-
eration of vitamin E radical by the reaction with vitamin
C. Recently, Packer et al. (61) proposed the folowing
scheme from the result of vitamin C oxidation by elec-
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FIGURE 10. The relationship between the concentration of TBA
reactants in the lungs of the four strains of mice and their LC50.
LCw values have been reported previously (67) to be 38, 49, 51,
and 64 ppm for ICR, BALB/c, ddy, and C57BL/6, respectively.
Values for the control group (0) and exposed (0) group are ex-
pressed as mean ± SD (n = 6). *p < 0.05; **p < 0.01; ***p <
0.001.

tron transportation to phenoxy radicals of vitamin E,
as shown below.

Potential
damage

Re Vitamin E V!rramin C. NADH
RH Vitamin E- Viamin C -4:D NAD +

Repaired
molecule

Vitamin C plays an important role in the maintenance
of vitamin E levels in tissue. It is believed that vitamin
E and vitamin C protect cells synergistically or coop-
eratively against oxidative stress.
The amounts of nonprotein sulfhydryls (mainly re-

duced glutathione) and vitamin E as antioxidants in
lungs of rats exposed to 10 ppm NO2 for 2 weeks were
reported (10) (Fig. 9). The time course of the nonprotein
sulfhydryls was very similar to that of protective en-
zymes. In contrast, the time course of vitamin E was
similar to that of lipid peroxidation in Figure 1, and it
was symmetric to that of nonprotein sulfhydryls.

This result suggests that vitamin E is an important

*
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Table 4. LC6, in various strains of animals for NO2 exposure for
16 hr.

Animal Strain Sex LC5(,, ppm
Mouse C57BL/6 F 67

C57BL/6 M 64
BDF1 F 60
CDF1 F 59
C3H/He M 57
BDF1 M 56
CDF1 M 56
BALB/c F 52
DBA/2 M 52
ddy M 51
C3H/He F 50
BALB/c M 49
ddy F 48
DBA/2 F 45
ICR F 40
ICR M 38
CF#1 M 36
CF#1 F 33

Hamster Golden M 28
Golden F 22

Rats Fischer M 56
SD M 50
Wistar M 49
Fischer F 48
SD F 47
Donryu M 47
Wistar F 45
Donryu F 39

Guinea pig Hartley M 62
Hartley F 50

factor that acts at an early stage to prevent the for-
mation of lipid peroxides. The increased amount of vi-
tamin E might be transported from other organs such
as liver, because vitamin E cannot be synthesized by
the animal's body. The authors guess that both non-
protein sulfhydryls and vitamin E act mutually as com-
plementary factors to protect cells from oxidative dam-
age. The time-dependent changes of nonprotein
sulfhydryls and vitamin E in the subacute experiment
were similar to that of glutathione-related enzyme ac-
tivities shown in Figure 7, and lipid peroxidation as
measured by ethane exhalation shown in Figure 2, re-
spectively.

In the life-span exposure of 0.04, 0.4, and 4 ppm NO2,
the significant increase of nonprotein sulfhydryls was
observed at 4 ppm NO2 at the 9 and 18 months (12). In
contrast, Nakajima et al. (62) have reported that the
amounts of reduced glutathione in lungs of mice contin-
uously exposed to 0.7 to 0.8 ppm NO2 over 6 months
decreased below the control level at the stage of body
weight loss. These results suggest that there is a species
difference in the protective ability of reduced glutathi-
one against the toxicity of NO2. We found that the pro-
tective ability of reduced glutathione against NO2 was
different not only among various species (63), but also
strains of animals (64). [See also references (65,66) on
species differences of the contents of lipid peroxides,
antioxidants, and phospholipids of various control ani-
mals.]

130
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FIGURE 11. The relationship between the concentration of NPSH
in lungs of the four strains of mice and their LC50. LC50 values
have been reported previously (67) to be 38, 49, 51, and 64 ppm
for ICR, BALB/c, ddy, and C57BL/6, respectively. Values in the
control group (0) are expressed as mean ± SD (n = 6). *p <
0.05; **p < 0.01; ***p < 0.001.

LC50 values of various animals species obtained by
NO2 exposure for 16 hr are reported by Takenaka et
al. (67), as shown in Table 4. Furthermore, we reported
that the changes of the antioxidative protective en-
zymes, lipid peroxides (Fig. 10), nonprotein sulfhydryls
(Fig. 11), vitamin E, and total lipids in lungs of ICR,
BALB/c, ddy and C57BL/6 mice exposed to 20 ppm NO2
for 16 hr were closely related to the susceptibility
against NO2 at LC50 (67).
With regard to the effect of NO2 on glutathione and

ascorbic acid, Leung and Morrow (47) reported that
vitamin C in lungs of guinea pigs exposed to 45 ppm
NO2 for 3 hr decreased markedly, but glutathione in
the lungs did not. Selgrade et al. (68) reported that
vitamin C-deficient guinea pigs exposed to 1, 3, and 5
ppm NO2 for 72 hr caused marked increase in lavage
proteins and lipids, but not at the 0.4 ppm level. Fifty
percent of the vitamin C-deficient animals exposed to 5
ppm died, and these animals had proteinaceous edema
fluid in the alveoli. These results confirm that vitamin
C also plays an important role on the protection against
NO2.
The authors thank K. Kubota for his encouragement and T. Na-

kajima for his useful advice on writing the manuscript.
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